GRADIENT OF LINE

Pearson Edexcel - Thursday 4 June 2020 - Paper 2 (Calculator) Higher Tier

1.

12 (a)	-0.09	M1	for suitable method to find gradient, eg 27 ÷ 300	Any readings from the graph must be reasonable. Condone missing negative for M1
		A1	for answer in the range -0.1 to -0.08 oe	Condone missing negative for the
(b)		C1	for explanation	Can ft explanation linked to incorrect gradient in part (a)
			Acceptable examples	
			volume of petrol used each km	
			litres/km	
			Rate of fuel consumption	
			For every 9 litres you can travel 100 km	
			Not acceptable examples	
			volume ÷ distance	
			volume of petrol used per distance	
			km/litre	
			as distance increases volume decreases	

Pearson Edexcel - Thursday 8 November 2018 - Paper 2 (Calculator) Higher Tier

2.

6	7	P1	process to use gradient eg $y = 3x + c$ or $c = -6$ or $\frac{15 - 9}{d - 5}$	Condone use of a letter other than d , for d
		P1	or $(15 - 9) \div 3$ or $(6, 12)$ (dep) full process to rearrange equation formed to isolate d	Must show processes to get as far as $d =$
			eg rearrangement of $15 = 3d - 6$ or $3 = \frac{15 - 9}{d - 5}$ or for $5 + \frac{15 - 9}{3}$	Award P2 for an answer of (7, 15)
		A1	cao	

Pearson Edexcel - Tuesday 12 June 2018 - Paper 3 (Calculator) Higher Tier

3.

12	(a)	1.5	M1	for method to find the gradient of the line, eg $\frac{12}{8}$	Must see use of scales.
			A1	for 1.5 oe	
	(b)	Explanation	C1	Explanation relating to rate of change of volume with time, eg rate at which the container fills or change in number of litres per second or number of litres added per second	Ignore any quantities given. Award the mark for an explanation involving rate.
	(c)	Explanation	C1	Explanation relating to volume (amount) of liquid in the container at the start eg number of litres in the container when $t = 0$, amount of liquid in the container to start with	

Pearson Edexcel - Thursday 25 May 2017 - Paper 1 (Non-Calculator) Higher Tier

6	comparison	M1	starts to manipulate expression e.g. $3y = 9x - 6$ or $3y = 9x - 5$
		A1	gives equation(s) which can be used to show that the gradients of the two lines are the same e.g. $y = 3x - 5/3$

Pearson Edexcel - Thursday 25 May 2017 - Paper 1 (Non-Calculator) Higher Tier

5.

18	y = -2x + 21	P1	shows evidence of understanding that AC is perpendicular to DB , or states the gradient of DB as 0.5 oe
		P1	shows a process to find the gradient of a perp. line e.g. use of $-\frac{1}{m}$ or
			states $y = -2x + c$ or states the gradient of AC as -2
		P1	(dep on P2) for sub. of $x = 5$, $y = 11$ into $y = mx + c$ where m is their found gradient for AC.
		A1	oe

Pearson Edexcel - Thursday 8 June 2017 - Paper 2 (Calculator) Higher Tier

6.

23	$y = \frac{-3}{\sqrt{7}}x + \frac{8}{\sqrt{7}}$	M1	for method to find gradient of <i>OP</i> , eg $\frac{\sqrt{7}}{2} \div \frac{3}{2} \left(= \frac{\sqrt{7}}{3} \text{ or } 0.88 \dots \right)$ oe
		M1	(dep) for method to find gradient of tangent, m , eg. $\frac{\sqrt{7}}{2} \times m = -1 \left(m = \frac{-3}{\sqrt{7}} \text{ or } -1.13 \right)$
		A1	for $y - \frac{\sqrt{7}}{2} = \frac{-3}{\sqrt{7}}(x - \frac{3}{2})$ or $y = \frac{-3\sqrt{7}}{7}x + \frac{8\sqrt{7}}{7}$ oe or $y - 1.32 = -1.13(x - 1.5)$

Pearson Edexcel - Specimen Papers Set 1 - Paper 2 (Calculator) Higher Tier

7.

10 ((a)	-1.5	M1 A1	for method to find gradient, eg. 210 ÷ 140 for correct interpretation of the negative gradient
((b)		C1	for explanation, eg. rate of change of depth of water in tank

Pearson Edexcel - Specimen Papers Set 1 - Paper 3 (Calculator) Higher Tier

8.

7	A and D	C1 in any order

Pearson Edexcel - Wednesday 5 November 2014 - Paper 1 (Non-Calculator) Higher Tier

*24	$2y = 3x - 4$ $y = \frac{3}{2}x - 2; m = \frac{3}{2}$ $\frac{3 - 1}{1 - 4} = -\frac{4}{3}$ $\frac{3}{2} \times -\frac{4}{3} = -2$	No with reason	M1 for $\frac{3}{2}$ oe or $y = \frac{3}{2}x\left(-\frac{4}{2}\right)$ oe M1 for method to find gradient of AB , eg $\frac{3-1}{1-4}$ or $\frac{-1-3}{4-1}$ or $-\frac{4}{3}$ oe A1 for identifying gradients as $\frac{3}{2}$ oe and $-\frac{4}{3}$ oe C1 (dep on M1) for a conclusion with a correct reason, eg No as product of $\frac{3}{2}$ and $-\frac{4}{3}$ is not -1, ft from their two gradients
1			

Pearson Edexcel - Friday 8 November 2013 - Paper 2 (Calculator) Higher Tier

10.

*25	Yes with explanation	3	M1 For Line A : writes equation as $y = 1.5x + 4$ or gives the gradient as 1.5 or constant term of 4 OR for Line B : shows a method which could lead to finding the gradient or gives the gradient as 2 or constant term of 4 or calculates a sequence of points including (0,4) or writes equation of line as $y = 2x + 4$
			M1 Shows correct aspects relating to an aspect of Line A and an aspect of Line B that enables some comparison to be made eg gradients, equations or points.
			C1 for gradients 1.5 and 2 and Yes with explanation that the gradients are different or states the lines intersect at (0,4) or explanation that interprets common constant term (4) from equations
			OR
			M1 for a diagram that shows both lines drawn and intersecting at (0,4)
			M1 for a diagram that shows both lines and their intersection point identified as
			(0,4)
			C1 for Yes and states the intersection point as (0,4)

Pearson Edexcel - Friday 14 June 2013 - Paper 2 (Calculator) Higher Tier

11.

13	(a)	(3, 3.5) oe	2	M1 for a correct method to find the value of either the x coordinate or the y coordinate of the midpoint or $x = 3$ or $y = 3.5$ A1 cao
	(b)	-1.8 oe	2	M1 for correct method to find the gradient OR (+)1.8 A1 for -1.8 oe

OCR GSCE – Tuesday 3 November 2020 – Paper 4 (Calculator) Higher Tier

7	(a)	Any correct reason e.g.	1		reason has to be fully correct
		two points identified e.g (-2,-6) and (2,4) or a triangle drawn on the graph			condone triangle with base 1 and height 2.5 providing it is clear
		and			alternative 1: e.g. $-6 = m(-2) + -1$
		[gradient =]			leading to $m = (-6 + 1) \div -2 = \frac{-5}{-2} = ($
		e.g $\frac{46}{22}$ (could be marked on			$\frac{5}{2}$ or 2.5)
		graph) = $\frac{10}{4} = (\frac{5}{2} \text{ or } 2.5) \text{ oe}$			alternative 2 : -6 = m(-2) + c 4= m(2) + c
					subtract $-10 = m(-4)$
					$\frac{-10}{-4} = (\frac{5}{2} \text{ or } 2.5) \text{ oe}$
	(b)	y = 2.5x - 1	2	B1 for $y = 2.5x + c$ ($c \ne -1$)	condone $\frac{5}{2}$ for 2.5

OCR GSCE – Sample Papers – Paper 5 (Non - Calculator) Higher Tier

13.

Fully correct explanation, finding gradients of both lines and showing that the gradients' product equals -1 B1 for gradient of first line is $\frac{4}{3}$ 2 A02.2 1 A02.4b B1 for gradient of second line is $\frac{-3}{4}$ M1 for finding the product of their gradients oe	
--	--

OCR GSCE – Sample Papers – Paper 6 (Calculator) Higher Tier

14.

14		2	3 1 AO1.3a 2 AO3.1b	M1 for any correct $\frac{\text{change in } y}{\text{change in } x}$ M1 for $\frac{s-q}{r-p} = \frac{4}{2}$ If zero scored SC1 for $\frac{\text{change in } x}{\text{change in } y} = \frac{1}{2}$	
----	--	---	---------------------------	--	--

AQA GSCE – Thursday 4 June 2020 – Paper 2 (Calculator) Higher Tier

15.

12	$\frac{9-3}{12}$ or $\frac{6}{3}$ or $2x (+c)$ where c is a constant	M1	oe eg $\frac{3-9}{-2-1}$ or $\frac{-6}{-3}$	
	2	A1		
	Add			
	2x may be implied eg $y-3=2(x+2)$			M1A0

AQA GSCE – Thursday 8 June 2020 – Paper 3 (Calculator) Higher Tier

	$-\frac{1}{4}$ or $-1 \div 4$	M1	oe		
	$5 = \text{their} - \frac{1}{4} \times 8 + c \text{ or } c = 7$ or $y - 5 = -\frac{1}{4}(x - 8)$	M1dep	oe $y = -\frac{1}{4}x + 7 \text{ implies M2}$		
28	$-\frac{1}{4}x + 7 = 0$ or $(x =) 28$	M1dep	oe		
	(28, 0)	A1	SC2 (-12, 0) or (6.75,	0)	
	Additional Guidance				
	Answer (0, 28) is A0 but may score M				
	(-12, 0) from using the gradient of the	SC2			
	(6.75, 0) from using the gradient of th	e perpend	licular as 4	SC2	

AQA GSCE – Tuesday 21 May 2019 – Paper 1 (Non - Calculator) Higher Tier 17.

	(gradient of $OP = $) $\frac{8-0}{4-0}$	M1	oe eg (gradient of <i>OP</i> =) 8/4
25(a)	(gradient of $OP =$) 2 or $\frac{2}{1}$ and $-1 \div 2 = -\frac{1}{2}$ or $2 \times -\frac{1}{2} = -1$ with M1 seen	A1	oe accept 'negative reciprocal, so $-\frac{1}{2}$ ' or 'product of gradients is -1 , so $-\frac{1}{2}$ ' oe comment	
	$4 \div 8 = \frac{1}{2}$ but slope is negative, so –	M0A0		
	Do not accept a gradient including x eg $\frac{8}{4}$ = 2, so gradient of OP = 2 x , product of gradients is -1, so $-\frac{1}{2}x$			M1A0

	Alternative method 1: $y = -\frac{1}{2}x + c$ and substitutes 8 and 4				
	$8 = -\frac{1}{2} \times 4 + c$ or $(c =) 10$	M1	oe implied by $y = -\frac{1}{2}x + 10$		
	$0 = -\frac{1}{2}x + \text{their } 10 \text{ or } (x =) 20$	M1dep	oe		
	their 20^2 + their 10^2 or 500 or $\sqrt{500}$	M1dep	oe eg 2√125 dep on M2		
	10 √5	A1	accept a = 10 with $\sqrt{500}$ seen		
	Alternative method 2: uses the for	mula for a line and substitutes $x = 0$ and $y = 0$			
25(b)	$y - 8 = -\frac{1}{2}(x - 4)$ and substitutes $x = 0$ or $y = 0$ or $(x =) 20$ or $(y =) 10$	M1	oe equation eg $x + 2y = 20$		
	$y-8=-\frac{1}{2}(x-4)$ and substitutes $x=0$ and substitutes $y=0$ or $(x=)$ 20 and $(y=)$ 10	M1	oe equation eg $x + 2y = 20$		
	their 20^2 + their 10^2 or 500 or $\sqrt{500}$	M1dep	oe eg 2√125 dep on M2		
	10 √5	A1	accept $a = 10$ with $\sqrt{500}$ seen		
	The mark scheme for question 25(b) contin	ues on the next page		

	Alternative method 3: uses formula	a for grad	dient with points A and B		
	$\frac{8-0}{4-x} = -\frac{1}{2}$ or $(x =) 20$	M1	oe correct method to wo x-coordinate of point A	rk out the	
	$\frac{y-8}{0-4} = -\frac{1}{2}$ or $(y=)$ 10	M1	oe correct method to we y-coordinate of point B	ork out the	
	their 20^2 + their 10^2 or 500 or $\sqrt{500}$	M1dep	oe eg 2√125 dep on M2		
	10 √5	A1	accept $a = 10$ with $\sqrt{500}$ seen		
	Additional Guidance				
25(b) (cont)	Check the diagram and 25(a) for possible correct working or values				
()	eg 1 20 marked on axis at A	M1			
	eg 2 10 marked on axis at B	M1			
	On alternative method 2, if using $y - 8$ x = 0 or $y = 0$ for M1 and both separate				
	On alternative method 2, incorrect rearrangement of $y - 8 = -\frac{1}{2}(x - 4)$ can score up to 3 marks				
	eg $y-8=-\frac{1}{2}(x-4)$, $2y-8=-x-4$,				
	when $y = 0$, $x = 4$, when $x = 0$, $y = 2$,	$\sqrt{4^2 + 2^2}$	= √20	M1M1M1	

AQA GSCE – Monday 12 November 2018 – Paper 3 (Calculator) Higher Tier 18.

	gradient is negative	B1			
28	Additional Guidance				

AQA GSCE – Thursday 7 June 2018 – Paper 2 (Calculator) Higher Tier 19.

	$\frac{1}{2}$ or 0.5	B1	oe eg $\frac{4}{8}$ or $\frac{2}{4}$			
	Add	Additional Guidance				
	1:2 or 50%			В0		
12(a)	$\frac{1}{2}x$	$\frac{1}{2}x$				
	y = 0.5x + 2			В0		
	<u>0.5</u> 1			В0		
	Ignore units					
	The answer to part (a) is too					
12(b)	The answer to part (a) stays the same	B1				
12(0)	The answer to part (a) is too small					
	Additional Guidance					

AQA GSCE – Tuesday 12 June 2018 – Paper 3 (Calculator) Higher Tier 20.

	Alternative method 1 – Using gradients			
	Gradient of $y = 3x + 7$ is 3		May come from using points on line	
			eg using (0, 7) and (1, 10)	
			and $\frac{10-7}{1-0} = 3$	
	and $y = 3x + 4$		or correct calculation for gradient from points on line $2y - 6x = 8$	
	and		eg using (0, 4) and (1, 7) and $\frac{7-4}{1-0} = 3$	
	gradient of $2y - 6x = 8$ is 3 or $6 \div 2$		B2 for $y = 3x + 4$ and lines have same gradient	
		В3		
			or $y = 3x + 4$	
			and gradient of $2y - 6x = 8$ is 3 or $6 \div 2$	
8(a)				
			or gradient of $y = 3x + 7$ is 3	
			and $y = 3x + 4$	
			B1 for gradient of $y = 3x + 7$ is 3	
			or $y = 3x + 4$	
			or gradient of $2y - 6x = 8$ is 3 or $6 \div 2$	
	Alternative method 2 – Using coordi	nates and	distances	
	Chooses a value for x and correctly evaluates the y value for both lines	M1	eg (0, 7) and (0, 4)	
	Chooses a different value for x and correctly evaluates the y value for both lines	M1dep	eg (1, 10) and (1, 7)	
	States that y values are a constant distance apart so parallel	A1	oe	

Continues on next page

	1				
	Alternative method 3 – Using simulta	neous eq	uations		
	y = 3x + 4 or $y - 3x = 4$ or $2y = 6x + 14$ or $2y - 6x = 14$	M1	oe Equates coefficients in ar	n any form	
	Any attempt to eliminate both variables from their equations	M1dep			
	States simultaneous equations have no (real) solution and concludes parallel	A1			
	Ad				
	To award A mark on Alternative meth				
8(a)	y = 3x + 4 and lines have gradient of	B2			
cont	y = 3x + 4 and $3x$ identified in both e	B2			
	Both lines have gradient 3x	B1			
	y = 3x + 7, gradient 3 and $y = 3x + 8$, rearrangement)	B1			
	y = 3x + 8, gradient 3 (error in rearran	В0			
	Parallel as both have same gradient	В0			
	2(3x + 7) - 6x = 8	M1			
	6x + 14 - 6x = 8				
	14 = 8			M1	
	$y = 3x + 7$ and $y = \frac{8 + 6x}{2}$ are equate	M1			
1	Alternative method 3				

	$3 \times -5 + 7$ or $-15 + 7$ or -8 or $(-5, -8)$ or $(-6 - 7) \div 3$ or -4.33 or $y = 3x + 9$	M1	Use a point on $y = 3x + 7$ compare gradient to 3 eg Gradient from (-5, -6)	
8(b)	Above and -8 or Above and -4.33 or Above and $y = 3x + 9$	A1	oe Above and eg Gradient fr (0, 7) is 2.6	om (-5, -6) to
	Add	ditional G	Buidance	
	Do not ignore incorrect statements eg -6 is less than -8 so above			M1A0
	(0, 7), (-1, 4), (-2, 1), (-3, -2), (-4, -	5), (–5, –	8) and ticks below	M1A0

AQA GSCE – Wednesday 25 May 2017 – Paper 1 (Non - Calculator) Higher Tier 21.

	<u>-95</u> <u>4-2</u>		oe fraction eg $\frac{-9+5}{4-2}$ or $\frac{-5+9}{2-4}$		
	or $\frac{-59}{2 - 4}$ or $(2, -5) - (4, -9) = (-2, 4)$	B2	B1 for $\frac{-9-5}{4-2}$ or $-5-9$		
	or (4, -9) - (2, -5) = (2, -4) or change in y change in x		or (2, -5) - (4, -9) = (-2, 4) or (4, -9) - (2, -5) = (2, -4)		
17(a)	or $\frac{\Delta y}{\Delta x}$ or		or change in y change in x or		
	triangle drawn with points A and B and side lengths of 4 and (–)2 identified or correct explanation of pattern of graph		$\frac{\Delta y}{\Delta x}$ or triangle drawn with points A and B and side lengths of 4 and (–)2 identified		

correct explanation of pattern of graph

 $\frac{-4}{2}$ = -2 or $\frac{4}{-2}$ = -2

Alternative method 1

 $\frac{-4}{2}$ = -2 or $\frac{4}{-2}$ = -2

graph

	Alternative method 2					
	Alternative method 2 Gives $y = -2x + c$ and substitutes $(2, -5)$ or $(4, -9)$ to find $c = -1$ or $y5 = -2(x - 2)$ or $y + 5 = -2(x - 2)$ or $y9 = -2(x - 4)$ or $y + 9 = -2(x - 4)$ and gives $y = -2x - 1$ and	B2	B1 for $(2, -5)$ or $(4, -9)$ to find $c = -1$ or $y5 = -2(x - 2)$ or $y + 5 = -2(x - 2)$ or $y9 = -2(x - 4)$ or $y + 9 = -2(x - 4)$ or gives $y = -2x - 1$ and			
	correctly substitutes and evaluates with the other pair of coordinates to check		correctly substitutes and evaluates with one or both pair(s) of coordinates			
	Alternative method 3					
17(a) cont	-5 = 2m + c and -9 = 4m + c and works out m = -2 using a correct algebraic method	B2	oe equations B1 for $-5 = 2m + c$ and $-9 = 4m + c$			
	Alternative method 4					
	-5 = -2(2) + c and $-9 = -2(4) + cand works out c = -1 for both$	B2	oe equations B1 for $-5 = -2(2) + c$ and $-9 = -2(4) + c$			
	Additional Guidance					
	In alt 1, examples of correct explanation are: 2 left and 4 up 2 right and 4 down					
	In alt 1, points A and B can be identified on a diagram by their coordinates					
	In alt 2, accept rearrangements of $y = -2x - 1$ eg $2x + y = -1$					
	$\frac{-5-9}{2-4}$ or $\frac{-9-5}{4-2}$ (= -2 or = 2)		ВО			

	Alternative method 1 – uses given point with one from (a) to show gradient = -2						
17(b)	$\frac{6019}{-301-4}$ or $\frac{6015}{-301-2}$	M1	oe eg $\frac{610}{-305}$ or $\frac{606}{-303}$	100			
	-2 and Yes	A1	Must see working for M1	1			
	Alternative method 2 – correct or no equation shown in (a)						
	Correct method to find $y = -2x - 1$	M1	May be seen in part (a)				
	y = -2x - 1 and shows that $601 = -2(-301) - 1$ and Yes	A1					
	Alternative method 3 – incorrect equation shown in (a)						
	Substitutes –301 and 601 into their equation from (a)	M1	equation must involve x	and y			
	Correct evaluation and No	A1ft					
	Alternative method 4 – have gained two marks in (a) by any method						
	uses $(2, -5)$ or $(4, -9)$ to work out $c = -1$	M1					
	601 = -2(-301) + c						
	and $c = -1$	A1					
	and Yes						
	Alternative method 5 – have shown that $c = -1$ for both points in (a)						
	601 = -2(-301) + c	M1					
	601 = -2(-301) + c and $c = -1$	A1					
	and Yes						
	Additional Guidance						
	y = -2x - 1 given in (a) but not used in	M0 for equation					
	Correct method in (a) to show that the incorrect equation. Incorrect equation	B2 in (a) M1A0 in (b)					